关于开关电源输出滤波电感的电磁能平衡问题分析
开关电源的输出滤波电感,也称为平滑扼流圈。
它的作用,主要是将整流后的电流进行展平,以得到较稳定的输出和平滑的波形。
为了取得更好的效果,是否可以取较大的电感值呢?答案并非如此,取值过大时,反而会引起其它方面的不良影响。
在参考文献[1]一书中,作者在他试制一台500W半桥式开关电源时,就遇到了这样的情况。
由于输出电流较大,因此采用分流的办法,用了两只外径为φ40mm的MPP磁粉芯。
(文献[1]第161页)
开始绕了24匝,即N=24,L=58μH。
当Io=15~30A(平均每只IL=7.5~15A)时,高压开关脉冲波形发生严重的自激抖动,高频振荡明显加剧,强烈的尖刺干扰从副边反射到原边电路,甚至在电网输入线和+20V辅助电源线上,都叠加了幅度高达5~6V的高频噪声干扰,并且在控制模块SG3525A的两输出端和高压开关管中点上脉冲都明显可见。
接着将匝数减少10匝,即N=14,L=20.6μH。
Io=20~25A(平均每只IL=10~12.5A),开始稳定了。
Io=30A(平均每只IL=15A)时,高压脉冲波形后沿仍有抖动。
最后,匝数减少到只有8~10匝,L=10.1μH。
Io=30A(平均每只IL=15A)时也能稳定工作了。
现在,对以上情况作一下简要分析。
根据作者在该书后面(文献[1]第234页)关于输出滤波电感的计算公式
L=(Vi-Vo)ton/(2Iomin) (1)
而Iomin一般取Io的(5~10)%,单只磁芯IL=15A的10%为1.5A。
开关频率fsw=80kHz。
即T=12.5μs。
Vi=18V,Vo=15V。
ton=(Vo/Vi)×(T/2) (2)
ton=(15/18)×(12.5/2)=5.2μs
L=(18-15)×5.2/(2×1.5)=5.2μH。
这就告诉我们,电感量的最小值为5.2μH,或者说临界电感值为5.2μH。
下面根据伏安(微)秒平衡的原理,来分析上述情况。
磁能量W为
W=(1/2)LI2(VAs)or(VAμs)(3)
电能功率P为
P=(1/2)LI2fsw(VA) (4)
公式转换后为
P/fsw=(1/2)LI2
图1 电原理图
将P用VI替代,1/fsw用T替代,得以下关系式
VIT=LI2/2 (5)
对照图1可知,V=Vi=18V,I=IL=15A。
就有
VIT=18×15×12.5=270×12.5=3375VAμs。
当N=24,Lo=58μH,15A时实际电感值取60%,L15=58×0.6=35μH。
当N=14,Lo=20.6μH,15A时实际电感值取80%,L15=20.6×0.8=16.5μH。
当N=10,Lo=10.6μH,15A时实际电感值取95%,L15=10.6×0.95=10.1μH。
分别得到各组磁能为
WN=24=0.5×35×152=3937.5VAμs(6)
WN=14=0.5×16.5×152=1856.25VAμs(7)
WN=10=0.5×10.1×152=1136.25VAμs(8)
前面计算的磁能为3375VAμs,实际上在占空比等于0.5时,还要折半就只有1687.5VAμs了。
显然,这点磁能——1687.5VAμs无法满足式(6)和(7)这两种情况。
只有在式(8)时磁电能完全满足要求,因此才能稳定地工作。
比较理想的情况是,电感值能随着输出电流变化而变化。
起始电感值,要根据磁芯饱和曲线来确定为临界电感值的1.5~3倍,不宜过大。
以上分析,是否对头,敬请专家同仁指正。
嵌入式视觉技术--潜力巨大,有待开发 4月08日 第三届·无线通信技术研讨会 立即报名 12月04日 2015•第二届中国IoT大会 精彩回顾 10月30日ETF•智能硬件开发技术培训会 精彩回顾 10月23日ETF•第三届 消费
新一代电源模块有效简化电源设计 电源模块的基本优势在于把系统设计人员从繁琐的电源设计中解放出来,专注核心IP开发。现在,传统的商用PCB电源模块和组件已经让位于更好、更小的 系统级封装 模块。新一代电源模块充分考虑了当前面临的设计
寻求TI技术支持:使用LM5175-Q1要做一款DC2DC电源:输入:9-36V,输出13V3A,输入输出共地;打算用TI的LM5175-Q1做升降压;由于没做过,希望能得到有经验的兄弟们指点!谢谢!如有TI代理,也请联系我:szjwang@163.com占个沙发~