基于STM32的多路电压测量设计方案
在打开DAC模块电源和配置好DAC所需GPIO的基础上,往DAC通道的数据DAC_DHRx寄存器写入数据,如果没有选中硬件触发,存入寄存器DAC_DHRx的数据会在一个APB1时钟周期后自动传至寄存器DAC_DORx.一旦数据从 DAC_DHRx寄存器装入DAC_DORx寄存器,在经过一定时间之后,输出即有效,这段时间的长短依电源电压和模拟输出负载的不同会有所变化。
为了扩大测量范围和测量精度,本设计在STM32的ADC前加入匹配电路。在ADC控制电路中,输入信号先经过射极电压跟随电路,然后经过分压电路,使输入信号满足AD603的输入要求。然后再经过射极电压跟随电路,输入ADC输入端。AD603的控制输入使用STM32的DAC,可以满足增益的要求。
匹配电路以AD603为核心。AD603为单通道、低噪声、增益变化范围线性连续可调的可控增益放大器。带宽90MHz时,其增益变化范围为-10dB~+30dB;带宽为9M时范围为10~50dB.
将V O U T与F D B K短路,即为宽频带模式(90MHz宽频带),AD603的增益设置为-11.07dB~+31.07dB.AD603的5、7脚相连,单片AD603的可调范围为-10dB~30dB.AD603的增益与控制电压成线性关系,其增益控制端输入电压范围为±500mv,增益调节范围为40dB,当步进 5dB时,控制端电压需增大:
ADC匹配电路的电路图如图2所示。
3.3 LCD控制电路
本设计所使用的LCD为2.4寸,320×240分辨率。LCD模块使用STM32的FSMC接口控制。
FSMC(Flexible Static Memory Controller)即可变静态存储控制器,是STM32系列中内部集成256KB以上Flash,后缀为xC、xD和xE的高存储密度微控制器特有的存储控制机制。通过对特殊功能寄存器的设置,FSMC能够根据不同的外部存储器类型,发出相应的数据/地址/控制信号类型以匹配信号的速度,从而使得 STM32系列微控制器不仅能够应用各种不同类型、不同速度的外部静态存储器,而且能够在不增加外部器件的情况下同时扩展多种不同类型的静态存储器,满足系统设计对存储容量、产品体积以及成本的综合要求。大电流电感
请问如果不考虑成本,这两种防误导通电路各有什么
这应该是关断加速电路吧,第一个栅极放电速度会快一些。都不行,都起不到任何防误通作用已经被添加到社区经典图库喽
http://www.dianyuan.com/bbs/classic/新手画的图
开关电源设计实战经验总结
开关电源的特征就是产生强电磁噪声,若不加严格控制,将产生极大的干扰。下面介绍的技术有助于降低开关电源噪声,能用于高灵敏度的模拟电路。
电路和器件的选择
帮忙设计下想用CR6842做一个电源,输出是正负电压(正负28V),电流最大在1.6A,输入电压最低110V,频率65K,我在网上找了些资料来算变压器,不知道怎么算,求大神指教,自己弄了快功放就差电源了。谢谢